Irreducibility of the Tutte Polynomial of a Connected Matroid

C. Merino

Instituto de Matemáticas, U.N.A.M., Mexico

and

A. de Mier and M. Noy

Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain

Received August 25, 2000; published online September 20, 2001

We solve in the affirmative a conjecture of Brylawski, namely that the Tutte polynomial of a connected matroid is irreducible over the integers. © 2001 Elsevier Science

If \(M \) is a matroid over a set \(E \), then its Tutte polynomial is defined as

\[
T(M; x, y) = \sum_{A \subseteq E} (x-1)^{r(E)-r(A)} (y-1)^{|A| - r(A)},
\]

where \(r(A) \) is the rank of \(A \) in \(M \). This polynomial is an important invariant as it contains much information on the matroid; see [2, 3] for useful surveys.

One of the basic properties of \(T(M; x, y) \) is that, if \(M \) is the direct sum of two matroids \(M_1 \) and \(M_2 \), then

\[
T(M; x, y) = T(M_1; x, y) T(M_2; x, y).
\]

In particular, this implies that \(T(M; x, y) \) has a non-trivial factor in \(\mathbb{Z}[x, y] \) if \(M \) is disconnected. Brylawski [1] conjectured that the converse also holds; this paper is devoted to a proof of this conjecture.

\(^1 \) This author was supported by a grant from D.G.A.P.A.

\(^2 \) Partially supported by projects SEU1-PB98-0933 and by CUR Gen. Cat. 1999SGR00356.
Theorem 1. If M is a connected matroid, then $T(M; x, y)$ is irreducible in $\mathbb{Z}[x, y]$.

Actually, an analysis of our proof shows that $T(M; x, y)$ is irreducible even in $\mathbb{C}[x, y]$.

Corollary 1. If a matroid M has c connected components M_1, \ldots, M_c, then the factorization of $T(M; x, y)$ in $\mathbb{Z}[x, y]$ is exactly

$$T(M; x, y) = T(M_1; x, y) \cdots T(M_c; x, y).$$

The main tool in proving our result is the following set of linear equations (B_k) that are satisfied by the coefficients of the Tutte polynomial of any matroid, and that were proved in [1].

Lemma 1. Let $T(M; x, y) = \sum b_{ij} x^i y^j$ be the Tutte polynomial of a matroid M and let m be the number of elements in M. Then

$$\sum_{i=0}^k \sum_{s=0}^{k-s} (-1)^s \binom{k-s}{t} b_{st} = 0, \quad (B_k)$$

for $k = 0, 1, \ldots, m-1$.

We also need the following basic properties [2]:

1. $b_{00} = 0$ if $|E| \geq 1$;
2. $b_{10} \neq 0$ if and only if M is connected;
3. $x^k \mid T(M; x, y)$ if and only if M has at least k coloops;
4. $y^k \mid T(M; x, y)$ if and only if M has at least k loops;
5. If $i \geq r(M)$ or $j \geq n(M)$, then $b_{ij} = 0$, except if $i = r(M)$ and $j = 0$, or if $i = 0$ and $j = n(M)$, where $r(M)$ is the rank of M and $n(M) = m - r(M)$ is the nullity of M.

Suppose now M is a connected matroid on a set of m elements, and that there is a non-trivial factorization

$$T(M; x, y) = \sum b_{ij} x^i y^j = A(x, y) C(x, y), \quad (1)$$

where $A(x, y) = \sum a_{ij} x^i y^j$ and $C(x, y) = \sum c_{ij} x^i y^j$.

Since $b_{00} = 0$, either a_{00} or c_{00} is zero; we may assume $a_{00} = 0$. Since

$$0 \neq b_{10} = a_{00} c_{10} + a_{10} c_{00},$$
the assumption implies that \(c_{00} \neq 0 \). We will prove that \(c_{00} = 0 \), thus obtaining a contradiction.

Since \(M \) is connected, by properties (3) and (4) above, neither \(x \) nor \(y \) are factors of \(A(x, y) \) or \(C(x, y) \). Define for a polynomial \(P(x, y) = \sum p_{ij}x^iy^j \),

\[
 r_P(x) = \max\{i : p_{ii} \neq 0\}, \quad r_P(y) = \max\{j : p_{jj} \neq 0\}, \quad (2)
\]

and let

\[
 m(P) = r_P(x) + r_P(y).
\]

Clearly, from (1), \(m = m(T) = m(A) + m(C) \). As we are supposing a non-trivial factorization, it follows that \(r_A(x), r_A(y) \leq m(A) < m(T) \). Also useful is the following property.

Lemma 2. Let \(M \) be a connected matroid and \(T(M; x, y) \) be its Tutte polynomial with a factorization as in (1). Then the polynomial \(A(x, y) \) also satisfies property 5, that is, if \(r_A(x) \leq i \) or \(r_A(y) \leq j \), then \(a_{ij} = 0 \), except if \(i = r_A(x) \) and \(j = 0 \), or if \(i = 0 \) and \(j = r_A(y) \).

Proof. Let \(\alpha = \max\{i : a_{ij} \neq 0 \text{ for some } j\} \) and \(\beta = \max\{j : a_{ij} \neq 0 \} \); define analogously \(\alpha' \) and \(\beta' \) for the polynomial \(C(x, y) \). The monomial \(a_{ij}c_{ii}^a x^{r_A(x)} y^{r_A(y)} \) appears in \(T(M; x, y) \), as it cannot be cancelled, and it is the term with maximum degree of \(x \) in \(T(M; x, y) \). Using property (5) we see that \(\alpha + \alpha' = r(M) \) and \(\beta + \beta' = 0 \), so \(\beta = 0 \) and \(\alpha = r_A(x) \). Thus, the maximum degree of \(x \) in \(A(x, y) \) has coefficient \(a_{r_A(x), 0} \). A similar argument shows that the maximum degree of \(y \) in \(A(x, y) \) has coefficient \(a_{0, r_A(y)} \).

We next prove two lemmas that together imply Theorem 1.

Let \((A_k), k = 0, 1, \ldots, m(A)\) be the same set of equations as the \((B_k)\), but with the \(a_{st} \) replacing the \(b_{st} \), that is,

\[
 \sum_{s=0}^{k} \sum_{t=0}^{k-s} (-1)^t \binom{k-s}{t} a_{st} = 0. \quad (A_k)
\]

Note that we do not assume \(A(x, y) \) to be the Tutte polynomial of a matroid, hence we do not know whether equations \((A_k)\) hold or not. In fact, we have the following result.

Lemma 3. With hypothesis as in Lemma 2, there is at least one equation \((A_l)\) with \(r_A(x) \leq l \leq m(A) \) that does not hold.
Proof. First, for \(r_A(x) \leq k \leq m(A) \) and \(i \geq 0 \) we define the equation \((A_k, i)\) as
\[
\sum_{s=0}^{k} \sum_{t=0}^{k-s} (-1)^{s+i} \binom{k-s}{t} a_{s,t+i} = 0. \tag{A_k, i}
\]
Note that \((A_k, 0)\) is the same equation as \((A_k)\). Now we prove a recurrence relation involving these equations.

Observe that for \(i > 0 \) and \(k > r_A(x) \) the left-hand side of equation \((A_k, i-1)\) is
\[
\sum_{s=0}^{k} \sum_{t=0}^{k-s} (-1)^{s+i-1} \binom{k-s}{t} a_{s,t+i-1}. \tag{3}
\]
Using the fact that \(\binom{k-s}{t} = \binom{k-s-1}{t} + \binom{k-s-1}{t-1} \), and assuming \((a-b) = 0\) for \(a \geq 0, b > 0 \), and also \((a-b) = 0\) if \(a < b \), we can rewrite (3) in the following way:
\[
\sum_{s=0}^{k} \sum_{t=0}^{k-s} (-1)^{s+i-1} \left[\binom{k-1-s}{t} + \binom{k-1-s}{t-1} \right] a_{s,t+i-1} + (-1)^{i-1} a_{k,i-1}
= \sum_{s=0}^{k-1} \sum_{t=0}^{k-1-s} (-1)^{s+i-1} \binom{k-1-s}{t} a_{s,t+i-1}
+ \sum_{s=0}^{k-1} \sum_{t=0}^{k-1-s} (-1)^{s+i-1} \binom{k-1-s}{t-1} a_{s,t+i-1} + (-1)^{i-1} a_{k,i-1}.
\]
The last term appears because \(\binom{k}{0} \) cannot be decomposed into two binomial coefficients. But by Lemma 2 for this last term we have \(a_{k,i-1} = 0 \), as \(r_A(x) = k \). Also, the first and second terms in the second row of the last expression (after a change of variables) are, respectively, the left-hand side of equations \((A_{k-1,i-1})\) and \((A_{k,i-1})\). So we can write symbolically
\[
(A_{k,i-1}) = (A_{k-1,i}) + (A_{k-1,i-1})
\]
or
\[
(A_{k-1,i}) = (A_{k,i-1}) - (A_{k-1,i-1}) \tag{4}
\]
for \(r_A(x) < k \leq m(A) \) and \(i > 0 \).

Let us suppose now that all equations \((A_k)\) hold for \(r_A(x) \leq k \leq m(A) \) and we will find a contradiction. Consider equation \((A_{r_A(x), r_A(y)})\). By Lemma 2, the only term \(a_{ij} \) involved in this equation that is not zero is
Then the left-hand side of \((A_{r_1(x)} r_1(y))\) reduces to \((r_1^{(x)} a_0, r_1(y)) = a_0, r_1(y)\), which is different from zero. On the other hand, using Eq. (4) repeatedly \(r_1(y)\) times, we can express this nonzero term as a sum of the left-hand sides of equations \((A_{l_0})\) for \(r_1(x) \leq k \leq m(A) = r_1(x) + r_1(y)\), that we are assuming to be all equal to zero. Therefore we obtain a contradiction and we conclude that not all of the \((A_{l_0}) = (A_l)\) hold for \(r_1(x) \leq k \leq m(A)\).

Lemma 4. If the coefficients \(a_{ij}\) do not satisfy equation \((A_k)\) for some \(k \leq m(A)\), then \(c_{00} = 0\).

Proof. Let \((A_k)\) be the first equation that does not hold. Equation \((B_k)\) holds because \(k \leq m(A) < m\). First, we rewrite this equation taking into account that

\[
b_{il} = \sum_{h \leq s} \sum_{l \leq t} c_{hl} a_{s-h, t-l}.
\]

Then we have the following equalities for the left-hand side of \((B_k)\).

\[
\sum_{j=0}^{k} \sum_{t=0}^{k-j} (-1)^j \binom{k-s}{t} b_{il} = \sum_{j=0}^{k} \sum_{t=0}^{k-j} (-1)^j \binom{k-s}{t} \sum_{h \leq s} \sum_{l \leq t} c_{hl} a_{s-h, t-l}
\]

\[
= c_{00} \sum_{j=0}^{k} \sum_{t=0}^{k-j} (-1)^j \binom{k-s}{t} a_{st} + \sum_{0 < h \leq l \leq k} c_{hl} \left[\sum_{s=h}^{k} \sum_{t=l}^{k-s} (-1)^j \binom{k-s}{t} a_{s-h, t-l} \right].
\]

(5)

Note that each \(c_{hl}\) has as coefficient an expression similar to the left hand side of \((A_k)\); in particular, for \(c_{00}\) this coefficient is exactly the left-hand side of equation \((A_k)\). More precisely, we introduce the equation \((A'_n)\).

\[
\sum_{j=0}^{n-i} \sum_{t=0}^{n-i-j} (-1)^{j+i} \binom{n-s}{t+i} a_{st} = 0.
\]

\((A'_n)\)

Observe that the left-hand side of equation \((A'_{k-h, l})\) is the coefficient of \(c_{hl}\) in (5) above: change indices \(s \leftarrow s+h, t \leftarrow t+l\) and note that for \(s > k-l\) and \(t \geq l\) the binomial \(\binom{k-s}{t+i}\) vanishes. Also note that \((A'_0)\) is precisely equation \((A_k)\), which we are assuming holds for \(0 \leq n < k\). Now, we prove that \((A'_n)\) holds for \(1 \leq n \leq k\) and \(1 \leq i \leq n\) using induction on \(n\).

If \(n = 1\), the only possible value for \(i\) is 1 and \((A'_{11})\) reduces to \(a_{00} = 0\), which was supposed from the beginning. Assuming the result for all values
less than \(n \), we use again a formula for the binomial coefficients to decom- pose the left-hand side of equation \((A'_{n-k}) \) into a sum of previous equations:

\[
\sum_{i=0}^{n-i} \sum_{t=0}^{n-i-t} (-1)^{t+i} \binom{n-s}{t+i} a_{it} = \sum_{i=0}^{n-i} \sum_{t=0}^{n-i-t} (-1)^{t+i} \left[\binom{n-s-1}{t+i-1} + \binom{n-s-2}{t+i-1} + \cdots + \binom{t+i-1}{t+i-1} \right] a_{it}.
\]

Each binomial coefficient \(\binom{n-s}{t+i} \) is partitioned into exactly \(n-s-t-i+1 \) terms, so that the last expression equals

\[
\sum_{i=0}^{n-1-(i-1)} \sum_{t=0}^{n-1-(i-1)-s} (-1)^{t+i} \binom{n-1-s}{t+i-1} a_{it} + \sum_{i=0}^{n-2-(i-1)} \sum_{t=0}^{n-2-(i-1)-s} (-1)^{t+i} \binom{n-2-s}{t+i-1} a_{it} + \cdots + \sum_{i=0}^{0} \sum_{t=0}^{0} (-1)^{t+i} \binom{1}{t+i-1} a_{it}.
\]

Now it is easy to check that the \(p \)th term in the last sum is equal (up to the sign) to the left hand side of equation \((A'_{n-k-1,i-1}) \), for \(1 \leq p \leq n-i+1 \). Thus we obtain the following relation:

\[
(A'_{n-k}) = -((A'_{n-k-1,i-1}) + (A'_{n-k-2,i-1}) + \cdots + (A'_{i-1,i-1})).
\]

If \(i = 1 \), the equations on the right are \((A'_{n-1}) \), \((A'_{n-2}) \), \(\ldots \), \((A'_{0}) \), all of which hold because \(n-1 < k \). If \(i > 1 \), equations \((A'_{n-k-1,i-1}) \), \(\ldots \), \((A'_{i-1,i-1}) \) hold by inductive hypothesis. In both cases \((A'_{n-k}) \) holds, and this concludes the induction.

Using this result we see from (5) that equation \((B_k) \) reduces to \(c_{00}(A_k) = 0 \). As \((A_k) \) does not hold, \(c_{00} \) must be zero and the lemma is proved.

The above two lemmas show that \(c_{00} = 0 \) and this establishes the theorem.

Remark. The assumption of characteristic zero is necessary, since otherwise property 2 after Lemma 1 does not hold, that is, \(b_{10} \) can be zero because of the characteristic. For example,

\[
T(M(K_4); x, y) = 2x + 2y + 3x^2 + 4xy + 3y^2 + x^3 + y^3 = (x + y)(x + y + x^2 + xy + y^2) \mod 2,
\]

whereas \(M(K_4) \) is a connected matroid.
REFERENCES